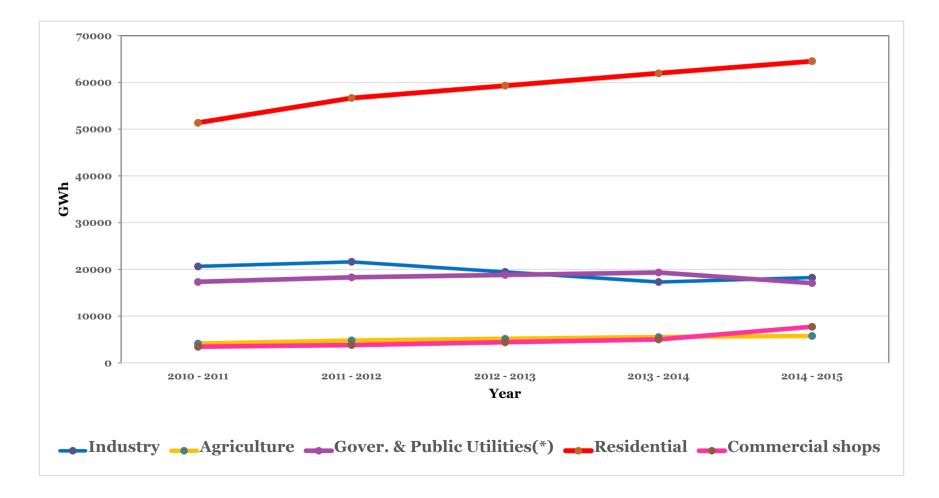
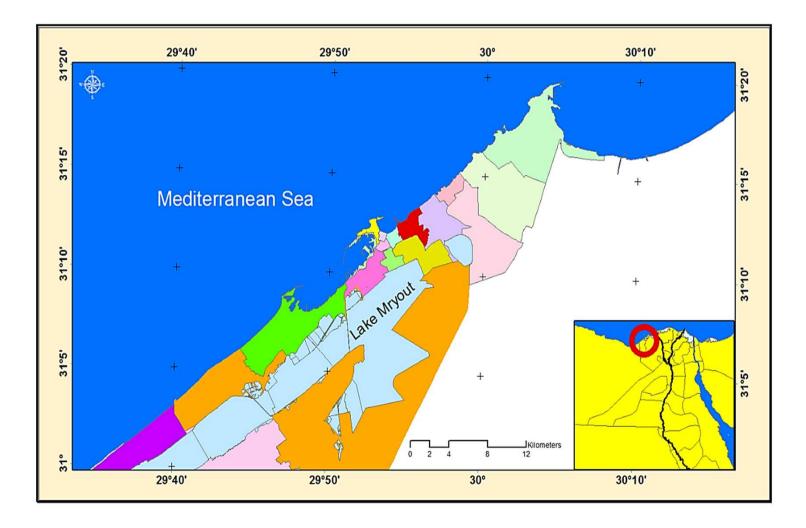
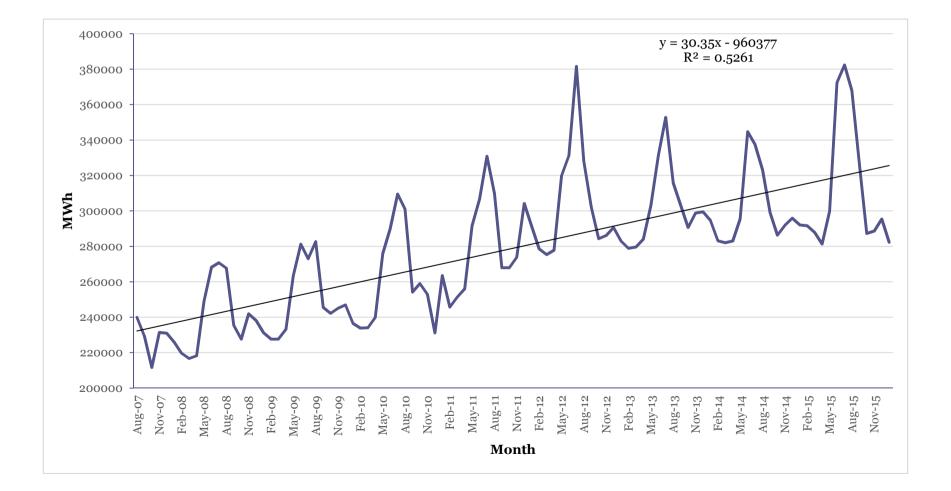

Impacts of climate change on residential electricity consumption in urban areas and potential adaptation options Case study: Alexandria Egypt

Prof. Mohamed A. Abdrabo Alexandria Research Center for Adaptation to Climate Change (ARCA) Alexandria University


Objectives

- To assess the impact of increasing temperature and humidity attributed to climate change on seasonal residential electricity consumption in Alexandria city, Egypt.
- To explore potential soft and hard actions to adapt to such impacts are considered.


Development of peak load and installed capacity in Egypt during the period 2010-2015

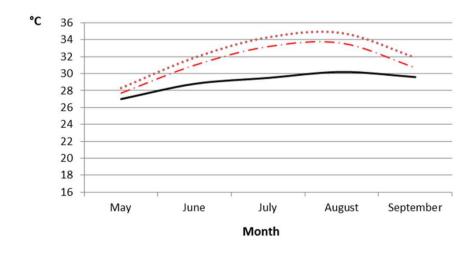

Electricity consumption by sector in Egypt

Alexandria city

Residential electricity consumption in Alexandria (2007 - 2015)

Estimating driving forces on seasonal electricity consumption: Regression analysis

 $\mathcal{Y}_{it} = \beta_0 + \beta_1 \mathcal{X}_{1it} + \beta_2 \mathcal{X}_{2it} + \beta_3 \mathcal{X}_{3it} + \beta_4 \mathcal{X}_{4it}$


where:

 \mathcal{Y}_{it} : is residential electricity consumption for district i and over time t; \mathcal{X}_{1it} : is maximum monthly temperature for district i and over time t; \mathcal{X}_{2it} : is relative monthly humidity for district i and over time t; \mathcal{X}_{3it} : is population size for district i and over time t; \mathcal{X}_{4it} : is GDP per capita for district i and over time t

Elect. con = -34978.63 + 259.51 Temp + 0.08157 Pop + 2.2667 GDP per capita

Current and expected temperature

	Maximum temperature (°C)		
Month			2050 (RCP
	2007-2016	2050 (RCP 2.6)	8.5)
May	27.0	27.7	28.3
June	28.8	31	31.9
July	29.5	33.2	34.3
August	30.2	33.6	34.8
September	29.6	30.7	31.9

_____ 2007-2016 ____ 2050 (RCP2.6) 2050 (RCP8.5)

Climate change impacts on electricity consumption

Month	Electricity consumption change MWh		
	2050 (RCP 2.6)	2050 (RCP 8.5)	
May	182	337	
June	571	804	
July	960	1246	
August	882	1194	
September	285	597	
Total	2880	14 0 178	
		1200	
		1000	
		4 800 W 600	
		400	
		200	
		May	June July August September Month
		-	

Dense high buildings in Alexandria

Potential adaptation options

• Hard options:

- Construction of additional electricity generation and upgrading electricity network capacities in order to cope with increasing residential demand for electricity.
- involve massive spending to meet both initial capital investments as well as operational costs.
- Soft options:
 - Using economic instruments (e.g. price mechanisms)
 - Introduction of more stringent electricity efficiency standards for air conditioning equipment.
 - Enforcement of urban planning and designs could as well improve internal housing environments and thus reducing the need for air conditioning.
- Hard options typically involve significant investments that would involve high opportunity cost, particularly in a developing country like Egypt.

Environmental/economic impacts valuation

- Valuation of emissions (carbon emission markets)
- Opportunity cost of funds to be invested in electricity generation.
- Hard to value aspects may include for instance discomfort due to reduced use of air conditions.

